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Abstract—Incentive mechanism design in crowdsourcing is
a trending topic. Advanced research attempts to tackle this
issue from a game-theory perspective, modeling workers’ and
requestor’s material utility functions. Besides material benefits,
studies have shown that the intrinsic rewards (psychological
factors) were also part of the workers’ non-negligible motivation.
However, previous works only mention this discovery textually,
rather than quantifying their models’ psychological factors. To
fill this blank, we utilize the psychological game theory to analyze
the crowdsourcing process. With mathematical ways, we first
show that the requestor could reduce the cost of compensation
via psychology methods, substituting partial monetary rewards
with psychological payoffs. Furthermore, when workers are
reciprocal and risk-neutral about expected earnings, we prove
that the related incentive plan is requestor’s optimal choice.
In particular, we find the workers’ psychological payoffs and
requestor’s cost in equilibrium. Finally, we conduct a simulation
to illustrate our findings intuitively. Therefore, our unique
psychological crowdsourcing model provides a promising detour
for incentive mechanism design in crowdsourcing scenarios.

Index Terms—Crowdsourcing, Psychological Game Theory,
Reciprocity, Incentive Mechanism Design

I. INTRODUCTION

With the prosperity of sharing economy, crowdsourcing
arises as a new exemplar of cooperative work, utilizing a
crowd of participants worldwide to complete a complicated
task [1]. In a crowdsourcing scenario, the requestor provides
remuneration to attract workers to join in. Hence, it is crucial
to design an incentive mechanism to ensure workers’ partici-
pation [2].

Among the techniques addressing the incentive mechanism
design in crowdsourcing, game theory is frequently used to
model the behaviors of the requestor and workers to maximize
their utility [3]. For instance, Hu et al. [4] proposed two
algorithms to tackle the sequential crowdsourcing dilemma
problem by utilizing a zero-determinant strategy; Narodit-
skiy et al. [5] introduced the prisoner’s dilemma game into
modeling workers’ malicious behaviors. Nevertheless, none
of the previous works took psychological factors into account
quantitatively.

Though authors in [6] have mentioned that psychological
factors could serve as intrinsic rewards to attract participants
into crowdsourcing, there still lacks processes to make a
quantitative analysis. To fill this gap, we first apply the
psychological game theory to crowdsourcing game model
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design for analysis. As part of the burgeoning area of be-
havioral economics, psychological game theory, which com-
bines classical game theory and psychology concepts, allows
the modeling of belief-dependent psychological utilities into
games [7]. Specifically, several social psychologists have a
common opinion that human relationships such as friendship,
cooperation, and competition, correlated to the psychological
conception - reciprocity [8], which is an opportune concept
to analog the relationship between workers in crowdsourcing.
The central concept of reciprocity is both appealing and
straightforward: People reward those they believe behaved
nicely to them, known as reciprocity. Moreover, recent work
illustrates that reciprocity truly exists in the crowdsourcing
system [9], especially with the support of blockchain [10].

Fig. 1. Crowdsourcing with reciprocity

As Fig. 1 shows, in a crowdsourcing system: the requestor
posts task and provides incentives through the Internet, work-
ers finish the task and return results to the requestor. Among
the workers, there exists reciprocity which we will focus on
in this paper [9]. With psychological game theory, we express
the kindness between workers and obtain their psychological
utility functions. In addition, we formulate and minimize the
requestor’s cost function under the premise that it ensures
workers’ benefits. By solving the optimization problem, we
obtain the equilibrium point of our model. We also compare
the results under three different incentive plans: individual
incentive plan, joint incentive plan, and relative incentive plan,
which will be elaborated in detail in Section IV. Then the
fact that psychological factors could replace partial monetary
incentives got proved quantitatively. Finally, we make a sim-
ulation to illustrate our findings intuitively.

Conclusively, our contributions are summarized as follows:



• To the best of our knowledge, this is the first work utiliz-
ing psychological game theory to analyze the incentive
mechanism design problem in crowdsourcing. A psycho-
logical game was formulated based on the psychological
game theory, and the equilibrium was proven.

• Comparing three different incentive plans, we calculated
the equilibrium psychological payoff under each plan
and proved that the relative incentive plan would be the
optimal choice for the requestor.

• We applied mathematical justification to prove that psy-
chological factors could partially replace monetary in-
centives when introducing reciprocity to crowdsourcing
systems.

The remainder of the paper is organized as follows: We
first survey the related work in Section II before presenting
our crowdsourcing game model in Section III. Afterward, we
analyze three different incentive plans based on our model in
Section IV. Section V concludes this paper.

II. RELATED WORK

With the transparent feature enabled by the blockchain
technology, Xin et al. [10] proposed a reciprocal crowd-
sourcing system in which the workers can benefit from other
workers and even the task itself. The experiment validated
the concept of reciprocity: workers would respond bitterly to
others’ sinister behaviors as destroyers and respond kindly
to others’ friendly behaviors as guardians. In other words,
workers are not merely pursuing their maximum material
benefits. A worker may sacrifice part of their rewards in
response to others’ kindness. However, this work did not
consider the phenomenon quantitatively in depth. Lu et al. [9]
considered the reciprocity in the mechanism design to enforce
cooperation and extort selfish works in crowdsourcing, but
there still lacks a quantitative analysis.

III. GAME MODEL

This paper considers the scenario where a requestor
launches a crowdsourcing request, then workers would follow
with selective efforts. We assume that all workers are risk-
neutral.

A. Game Preferences

Let N = {1, ..., n} be the set of homogeneous workers
where n ≥ 2. Let T be the set of all the historical choice
files. Let Ei be the set of all behavior strategies of worker
i ∈ N . Each strategy assigns each history t ∈ T with a
probability distribution over all possible choices. Each worker
i can choose effort level ei ∈ {0, 1}, where ei = 0 denotes
that the worker selects to provide low-quality data; ei = 1
denotes that the worker selects to provide high-quality data.
If a worker desires to finish the job with high effort, they will
pay c, representing their time and energy costs. Moreover, in
providing corresponding data, worker i’s effort cost can be
represented as eic, measured in monetary units.

Based on the individual performance indicator σi ∈ {h, l}
of each worker i [11], the requestor would provide worker i

with a compensation of piσi
. Since each worker’s task finishing

process is independent, we can assume that all the indicators
are uncorrelated. The probability of obtaining an indicator
with high quality (σi = h) or low quality (σi = l) merely
depends on worker i’s individual effort: if i worked diligently,
σi = h with probability θ ∈ (1/2, 1), and if i worked idly,
σi = l with probability (1− θ).

Material payoff function Worker i’s material payoff func-
tion can be represented as:

πi = piσi
− eic (1)

Psychological payoff function Since we assumed all work-
ers are reciprocal towards one another in our system, worker
i’s psychological payoff depends on i’s beliefs on other
workers’ strategies and i’s beliefs on other workers’ beliefs
on i’s strategies.

In accordance with Dufwenberg and Kirchsteiger’s work
[12], we represent beliefs as behavior strategies. Let Aij =
Ej denotes the set of worker i’s all possible beliefs over the
strategy of worker j. Let Biji = Aji = Ei denotes the set
of worker i’s all possible beliefs over worker j’s belief over
worker i’s strategy. For beliefs eij ∈ Eij , aij ∈ Aij , and
bij ∈ Bij , after worker i selects strategy ei, they believe that
they select in a way (ei) that j’s material payoff would be
πj

(
ei, (aij)j 6=i

)
.

Then we define the reference point of worker i’s belief over
worker j:

πrefij

(
(aij)j 6=i

)
=
1

2
· [max

{
πj

(
ei, (aij)j 6=i

)
| ei ∈ Ei

}
+min

{
πj

(
ei, (aij)j 6=i

)
| ei ∈ Ei

}]
(2)

Worker i’s kindness towards another worker j 6= i can be
defined as:

kij

(
ei(t), (aij(t))j 6=i

)
= πj

(
ei(t), (aij(t))j 6=i

)
− πrefij

(
(aij(t))j 6=i

) (3)

To simplify the equation, in the rest parts, we will ignore the
t. Then worker i’s beliefs over how much kindness worker
j 6= i gives back can be expressed as:

λiji (aij , biji) = πi (aij , biji)− πrefij (biji) (4)

Hence, worker i’s psychological payoff function can be
expressed as:

Pi(kij , λiji) =
∑

j∈N\{i}

(
εij sign (kij (ei, aij) · λiji (aij , biji))

·
√
|kij (ei, aij) · λiji (aij , biji)|

)
(5)

where the constant εij measures the workers’ inherent sensi-
tivity concerning reciprocity. This type of representation can
make the rest of the calculation process easier.



Worker i’s utility function Worker i’s utility is the sum
of their material payoff function and psychological payoff
function, which can be expressed as:

Ui

(
ei, (aij , biji)j 6=i

)
= πi

(
ei, (aij)j 6=i

)
+∑

j∈N\{i}

(
εij · sign (kij (ei, aij) · λiji (aij , biji))

·
√
|kij (ei, aij) · λiji (aij , biji)|

) (6)

Where worker i’s utility is constituted with n terms, the first
term is i’s material payoff, and the rest is i’s psychological
payoffs concerning each other player j 6= i.

B. Problem Formulation

We denote piσiσj
to be the compensation paid to worker

i after both σi and σj realize. we can devise this problem
into an optimization problem, in which the requestor tries to
minimize the cost to motivate the workers. To simplify the
presentation, we assume that there are only two workers (i ∈
{x, y}) in our crowdsourcing system. In the following part,
we will make quantity analyses concerning the three incentive
plans. By formulating the requestor’s expected compensation
cost, we can express the problem as a principal (requestor)
problem:

min

θ2
∑
i∈x,y

pihh + (1− θ)θ
∑
i∈x,y

(
pihl + pilh

)
+ (1− θ)2

∑
i∈x,y

pill

s.t. Ui(1, 1, 1)≥ Ui(0, 1, 1),
∀i∈ x, y

pihh, p
i
hl, p

i
lh, p

i
ll≥ 0

(7)

where Ui(1, 1, 1) ≥ Ui(0, 1, 1) is the incentive compatibil-
ity constraints (IC). IC is used to ensure that when we obtain
the sequential reciprocity equilibrium [12], worker i’s effort
level in the optimal incentive plan can reach the high effort
{ei = 1 | i ∈ x, y}. High effort level is usually preferred by
the requestor, so we only concentrate on the pure strategy
equilibrium where {ei = 1 | i ∈ x, y} in this paper. Worker
i ∈ {x, y}’s utility function could be rewritten as:

Ui (ei, aij , biji) =πi (ei, aij)+

εij · sign (kij (ei, aij) · λiji (aij , biji))

·
√
|kij (ei, aij) · λiji (aij , biji)|

(8)

Combine Eq.(7) and Eq.(8), the incentive compatibility
constraints (IC) could be represented as:

θ2pihh + (1− θ)θ(pihl + pilh) + (1− θ)2pill − 1 ∗ c+

εij · sign (kij (1, 1) · λiji (1, 1)) ·
√
|kij (1, 1) · λiji (1, 1)| ≥

(1− θ)θpihh + (1− θ)2pihl + θ2pilh + (1− θ)θpill − 0 ∗ c+

εij · sign (kij (0, 1) · λiji (1, 1)) ·
√
|kij (0, 1) · λiji (1, 1)|

(9)

IV. RESULT ANALYSIS

The requestor usually has three incentive plans to imple-
ment [13]: (1) The individual incentive plan (IIP) rewards the
worker only based on their performance, unrelated to peer
performance indicator; (2) The relative incentive plan (RIP)
rewards the worker while the quality of their result is superior
to others; (3) The joint incentive plan (JIP) rewards the worker
under the condition that their peer performs well.

A. No Reciprocity

We assume there exists no reciprocity among workers in
the first place, neglecting the workers’ psychological effects
(ε = 0). Then the incentive compatibility constraints (IC) is
as follows:

θ2pihh + (1− θ)θ(pihl + pilh) + (1− θ)2pill − c ≥
(1− θ)θpihh + (1− θ)2pihl + θ2pilh + (1− θ)θpill

(10)

For individual incentive plan (IIP), the worker gets rewards
when they provide result with high quality (choosing high ef-
fort level), indicating pilh = pill = 0. Substitute that into above,
we obtain pihh = pihl = c

(2θ−1) ; For the relative incentive
plan (RIP), the worker gets rewards when they put in higher
effort comparing to others, indicating pilh = pill = pihh = 0.
Similarly, we obtain pihl =

c
(2θ−1)(1−θ) ; For the joint incentive

plan (JIP), out of convenience, we consider the following
particular case: the worker gets rewards only if both they and
their peer perform well, indicating pihl = pilh = pill = 0.
Similarly, we obtain pihh = c

(2θ−1)θ

B. With Reciprocity

In this part, we consider the case that there exists reciprocity
among workers.

Theorem 1 When the game reaches equilibrium, the effort
level of x and y is {ex = 1, ey = 1} for all incentive plans
IIP, RIP and JIP.

Proof: To prove the condition that both workers utilize
positive efforts as a psychological equilibrium, the overall
utility of choosing ei = 1 must be greater than that of
choosing ei = 0 given aij = biji = 1 ∀i, j ∈ {x, y}. Then
we can check each incentive plan individually.

When the requestor chooses IIP: there is no reciprocity
among workers, so worker i’s compensation is independent
to σj and ej . Therefore, when both workers choose the high
effort level, the game’s equilibrium is reached.

When the requestor chooses JIP: given aij = 1, indicating
i thinks that j would choose to provide high quality data.
Worker i supposes that status {σi = h, σj = h} would reach
with probability θ2 that i works diligently, and with probabil-
ity θ(1− θ) that i works idly. In JIP, i’s high effort is a sign
of kindness to j as it enlarges j’s expected material payoff.
Thus, after i has a first order belief of aij = 1, i’s expectant
kindness towards j choosing effort level ei = 1 is:

kij(1, 1) = θ2pjhh − c−
1

2

(
θ2pjhh − c+ θ(1− θ)pjhh − c

)
(11)



where the parenthesis term represents j’s reference point
payoff given i’s beliefs. Substitute the corresponding piσiσj

from section IV-A into the function, the expression above can
be rewritten as:

kij(1, 1) =
θ(2θ − 1)pjhh

2
=
c

2
(12)

which always remains positive since i acting kindly towards
j made it easier for j to get rewards. If i decides to loaf on
the job, i’s expected kindness to j is:

kij(0, 1) = −
c

2
(13)

which always remains negative since comparing to j’s equi-
table payoff, i’s expected payoff given to j is lower. Similarly,
i’s expected received kindness from j is given by:

λiji(1, 1) =
θ(2θ − 1)pihh

2
=
c

2
(14)

Therefore, when i selects the high effort level, they expect a
positive psychological payoff; when i selects the low effort
level, they expect a negative psychological payoff.

Hence, when the requestor chooses JIP and aij = biji = 1,
worker i’s utility can be expressed as:

θ2c

(2θ − 1)θ
− c+ ε

c

2
(15)

when i choose ei = 1, the utility will be:

θ(1− θ)c
(2θ − 1)θ

− ε c
2

(16)

It is evident that Eq.(15) is (strictly) greater than Eq.(16) for
any ε ≥ (>)0.

When the requestor chooses RIP: given aij = biji = 1
∀i, j ∈ {x, y}, take the correspond piσiσj

from section IV-A
and substitute it into the function. When selecting ei = 1,
worker i’s expected kindness towards worker j is:

kij(1, 1) = θ(1− θ)pjhl − c−
1

2

[
θ(1− θ)pjhl − 2c+ θ2pjhl

]
= −

θ(2θ − 1)pjhl
2

= − θc

2(1− θ)
(17)

which remains negative. j’s expected payoff decreases as i
chooses high effort. Conversely, when worker i chooses ei =
0, i’s expected kindness towards worker j is represented as:

kij(0, 1) =
θc

2(1− θ)
(18)

which remains positive. Similarly, i’s expected received kind-
ness from j is represented as:

λiji(1, 1) = −
θ(2θ − 1)pihl

2
= − θc

2(1− θ)
(19)

Thus, worker i’s total utility is represented as:

(1− θ)θ c

(2θ − 1)(1− θ)
+ ε

θc

2(1− θ)
− c (20)

when i chooses ei = 1, the utility will be:

(1− θ)2 c

(2θ − 1)(1− θ)
− ε θc

2(1− θ)
(21)

Same as above, it’s evident that Eq.(20) is (strictly) greater
than Eq.(21) for any ε ≥ (>)0.

Theorem 2 Under different incentive plans, worker i’s
expected received equilibrium psychological payoff at stage
2 is:

Pi (kij , λiji) =


0 under (IIP)
εc
2 under (JIP)
εθc

2(1−θ) under (RIP)

Proof: According to the first part of the proof in Theorem
1, IIP’s entailed psychological payoff equals zero.

JIP’s entailed psychological payoff equals to εc
2 is verified

from Eq.(15). The overall psychological incentive derives
from εc and could verify from Eq.(15) and Eq.(16). Similarly,
RIP’s entailed psychological payoff equal to εθc

2(1−θ) is verified
from Eq.(20). The overall psychological incentive derives
from εθc

(1−θ) and could verify from Eq.(20) and Eq.(21).
Theorem 3 When we introduce reciprocity to the crowd-

sourcing system and the workers are risk-neutral about the
amount of compensation, we can obtain three local solution
functions for the requestor problem: 1. The normal individual
incentive plan, which is the same to Section IV-A; 2. joint
incentive plan in which:

pihh =
c

θ(2θ − 1)(1 + ε)
> pihl = pilh = pill = 0 (22)

3. and relative incentive plan in which:

pihl =
c

(2θ − 1)(1− θ + θε)
> pill = pihh = pilh = 0 (23)

for all i ∈ {x, y}.
Proof: For the principal (requestor)’s problem 7, with i, j ∈

{x, y}, we have:

kij(1, 1) =
(2θ − 1)

2

[
θ
(
pjhh − pjhl

)
+(1− θ)

(
pjlh − pjll

)]
= λjij(1, 1)

(24)

kij(0, 1) = − (2θ − 1)

2

[
θ
(
pjhh − pjhl

)
+(1− θ)

(
pjlh − pjll

)]
(25)

Then we can formulate the Lagrangian of the requestor
problem:

L = θ2
∑

i∈{x,y}

pihh + (1− θ)θ
∑

i∈{x,y}

(
pihl + pilh

)
+ (1− θ)2

∑
i∈{x,y}

pill

− µx [(2θ − 1) ∗ (θ (pxhh − pxlh) + (1− θ)pxhl − pxll)

−c+ εPx (λxyx(11), kxy(11))− Px (λxyx(11), kxy(01))]

− µy [(2θ − 1) ∗ (θ (pyhh − pylh) + (1− θ)pyhl − pyll)

−c+ εPy (λyxy(11), kyx(11))− Py (λyxy(11), kyx(10))]
(26)



By taking the derivation of Lagrangian, we can obtain:

∂L

∂pihh
=θ2 − µiθ(2θ − 1)(pihh)

′+

µiε[
∂Pi (λiji(1, 1), kij(1, 1))

∂pihh
−

∂Pi (λiji(1, 1), kij(0, 1))

∂pihh
]−

µjε[
∂Pj (λjij(1, 1), kji(1, 1))

∂pihh
−

∂Pj (λjij(1, 1), kji(0, 1))

∂pihh
] ≥ 0

(27)

Similarly, we can obtain ∂L
∂pihl

, ∂L
∂pilh

, ∂L
∂pill

.
If there exists no reciprocity in the crowdsourcing system,

which means λiji(1, 1) = kij(1, 1) = kij(0, 1) = 0, then
by solving the derivation of Lagrangian we obtain the same
solution as the individual incentive plan, in which the worker’s
reward function does not contain any psychological utility.

If there exists positive reciprocity in the crowdsourcing
system, which means λiji(1, 1) = kij(1, 1) > 0 > kij(0, 1),
and given that all workers are identical, then we can rewrite
the derivation of Lagrangian as:

∂L

∂pihh
≥ 0⇒ θ2 − µ[θ(2θ − 1)(1 + ε)](pihh)

′ ≥ 0 (28)

∂L

∂pihl
≥ 0⇒ θ(1−θ)−µ[(2θ−1)(1−θ−εθ)](pihl)′ ≥ 0 (29)

∂L

∂pilh
≥ 0⇒ (1− θ)θ−µ[(2θ−1)(−θ+ ε(1− θ))](pilh)′ ≥ 0

(30)

∂L

∂pill
≥ 0⇒ (1−θ)2+µ[(2θ−1)(1+ε)(1−θ)](pill)′ ≥ 0 (31)

It is evident that µ > 0. From conditions Eq.(28)-Eq.(31)
we can see that pilh = pill = 0 if ε ∈ [0, 1−θθ ] and pihl =
pilh = pill = 0 if ε ∈ [ 1−θθ , 1]. This implies that the requestor
can use the joint incentives plan to generate the most valid
positive psychological exchange. If ε ∈ [0, 1−θθ ], combines
with Eq.(28) and Eq.(29), we can obtain:

1

(pihh)
′ =

µ(2θ − 1)(1 + ε)

θ

1

(pihl)
′ =

µ(2θ − 1)(1− θ − εθ)
θ(1− θ)

that leads to:
pihl =

(1− θ − εθ)
(1 + ε)(1− θ)

pihh (32)

If ε ∈ [ 1−θθ , θ
1−θ ] , from above we can know that pihh remains

positive. Substituting this into Eq.(9):

(2θ − 1)(1 + ε)θpihh = c (33)

which leads to:

pihh =
c

(2θ − 1)(1 + ε)θ
(34)

Here, we prove the Eq.(22).
If there exists negative reciprocity in the crowdsourcing

system, which means λiji(1, 1) = kij(1, 1) < 0 < kij(0, 1),
and given that all workers are identical, then we can rewrite
the derivation of Lagrangian as:

∂L

∂pihh
≥ 0⇒ θ2 − µ[θ(2θ − 1)(1− ε)](pihh)′ ≥ 0 (35)

∂L

∂pihl
≥ 0⇒ θ(1−θ)−µ[(2θ−1)(1−θ+εθ)](pihl)′ ≥ 0 (36)

∂L

∂pilh
≥ 0⇒ (1− θ)θ + µ[(2θ − 1)(θ + ε(1− θ))](pilh)′ ≥ 0

(37)

∂L

∂pill
≥ 0⇒ (1−θ)2+µ[(2θ−1)(1−ε)(1−θ)](pill)′ ≥ 0 (38)

It is evident µ > 0. From conditions Eq.(35)-Eq.(38) we can
see that pilh = pill = 0 if ε ∈ [0, 1] and pihh = pilh = pill = 0
if ε = 1. We can know that the requestor can use the
relative incentives plan to generate the most valid negative
psychological exchange. If ε ∈ [0, 1], combines with Eq.(35)
and Eq.(36), we can obtain:

1

(pihh)
′ =

µ(2θ − 1)(1− ε)
θ

1

(pihl)
′ =

µ(2θ − 1)(1− θ + εθ)

θ(1− θ)
that leads to:

pihh =
(1− ε)(1− θ)
(1− θ + θε)

pihl (39)

If ε = 1 from above we know that only pihl remains
positive. Substituting this into the Eq.(9):

(2θ − 1)(1− θ + θε)pihl = c (40)

which leads to:

pihl =
c

(2θ − 1)(1− θ + θε)
(41)

Here we proved Eq.(23).
Theorem 4 When we introduce reciprocity to the crowd-

sourcing system and the workers are risk-neutral about the
amount of compensation, the optimal option for the requestor
is to provide incentives through the relative incentive plan.

Proof:From the Theorem 3, we can know that the expected
cost of the requestor is:

E (kij , λiji) =


2θc

(2θ−1) IIP
2θ2c

(2θ−1)(1+ε)θ JIP
2θ(1−θ)c

(2θ−1)(1−θ+θε) RIP



Simple algebra shows that the expected cost under RIP is
strictly smaller than JIP and IIP for any ε > 0. Moreover,
compared with results of Theorem 3 with Section IV-A, it
also proves that we can replace partial monetary rewards
with psychological incentives by introducing reciprocity to
the system design.

C. Simulation

Fig. 2. Expected cost of requestor when c = 100

Fig. 3. Psychological payoff of worker when c = 100 and θ = 0.8

To illustrate the theorem more intuitively, we simulate the
case when c = 100. As shown in Fig. 2, the x-coordinate
and y-coordinate represent the ε and θ respectively, the z-
coordinate represents the expected cost of the requestor.
Evidently, the green surface is strictly below the yellow and
pink surface when ε 6= 0, which means that the requestor’s
expected cost is lower under RIP than JIP and IIP when
there exists reciprocity. In other words, RIP provides more
significant psychological incentives than JIP. Besides, we can
see that their faces curve down for pink and green surfaces as
the ε increases. Specifically, the line when ε = 0 is the highest
line of that surface shows that we can reduce the requestor’s
cost by introducing reciprocity. If we let θ = 0.8 as Fig.
3 shows, the psychological payoff of worker at equilibrium
increases when the worker becomes more sensitive to reci-
procity. And the relative incentive plan (RIP) can provide the
highest psychological payoff to worker, which is consistent
with our theorem.

V. CONCLUSION

In this article, we examine crowdsourcing games from both
typical game theory perspectives and psychological effects.
Notably, we introduce reciprocity into the crowdsourcing
system and make a quantitative analysis. Under three different
incentive plans, we find their equilibrium points, respectively.
Furthermore, we prove that the relative incentive mechanism
is the optimal choice for the requestor when the workers
are reciprocal and risk-neutral concerning wealth variations.
One of the most significant contributions of this paper is that
we mathematically prove that psychological incentives could
replace monetary rewards partially. To our best knowledge,
our proposed crowdsourcing game model is precursory and el-
ementary. Moreover, we believe the analysis in this work will
benefit reciprocity in crowdsourcing supported by blockchain,
which are transparent and auditable.
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