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Abstract—Leveraging various mobile devices to train the
shared model collaboratively, federated learning (FL) can im-
prove the privacy and security of 6G communication. To economi-
cally encourage the participation of heterogeneous mobile devices,
an incentive mechanism and a fair trading platform are needed.
In this paper, we implement a blockchain-based FL system and
propose an incentive mechanism to establish a decentralized and
transparent trading platform. Moreover, to better understand the
mobile devices’ behaviors, we provide economic analysis for this
market. Specifically, we propose two strategy models for mobile
devices: the discrete strategy model (DSM) and the continuous
strategy model (CSM). Also, we formulate the interactions among
the non-cooperative mobile devices as a dynamic game, where
they adjust their strategies iteratively to maximize the individual
payoff based on others’ previous strategies. We further prove
the existence of Nash equilibrium (NE) in two different models
and propose algorithms to achieve them. Simulation results
demonstrate the convergence of the proposed algorithms and
show that the CSM can effectively increase the mobile devices’
payoffs to 128.1 percent at most compared with DSM.

Index Terms—Federated learning, Nash equilibrium, dynamic
game, blockchain

I. INTRODUCTION

6G with transformative technologies will transfer wireless
communication from “connected things” to “connected

intelligence” [1], which will be empowered by ubiquitous
artificial intelligence (AI) [2]. However, in traditional machine
learning (ML), the data are gathered to the centralized database
for the model training at some powerful computing platforms
such as a cloud data center, which have efficiency issues and
cause privacy and safety concerns [3].

Fortunately, the blockchain-based federated learning (FL)
system provides a promising solution to such a problem [4].
FL can assign machine learning tasks to mobile devices to
train the shared model collaboratively. For example, Google
used the FL to power applications such as next-word prediction
through jointly learning users’ behaviors across a large pool of
mobile devices [5]. Since the raw data used for model training
are stored in the local mobile devices instead of a cloud,
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users’ privacy is enhanced. In FL, two parties are involved:
the requester, the users who need model training, and the
workers, namely the mobile devices that use their data to train
FL models. The whole procedure of FL consists of several
global iterations, with each covering several local iterations.
Each mobile device trains every training model in its local
iteration. In a global iteration, the requester sends the training
model to mobile devices and updates the model after receiving
several trained models. Moreover, using blockchain, FL can be
implemented via decentralized data ledgers without requiring
any central server, which mitigates the risks of single-point
failures [6]. All network entities transparently trace any update
events and user behaviors. Furthermore, through transaction
logs, one can easily trace the origin where a model parameter
is modified or updated during the training process. Also, the
smart contracts on the blockchain can provide automatic and
decentralized services [7]. Once the smart contract is deployed
on the blockchain, the code cannot be modified, and it can
provide a self-organized transaction process [8]. Overall, the
blockchain-based FL systems can support a secure, decen-
tralized platform and offer services to fulfill the application
requirement.

Despite all the benefits, blockchain-based FL systems still
face challenges. The first issue is efficiency and scalability
problem. Although it would be an effective way for blockchain
to serve as decentralized storage and replace the central FL
servers through the literature review [9], how to choose an
efficient consensus mechanism for FL is also a key chal-
lenge. Specifically, based on diverse consensus mechanisms,
blockchains can be categorized into three main types: public,
private, and consortium blockchain [10]. Zhang et al. proposed
a reliable public blockchain-based FL system and designed
an incentive mechanism to engage self-interested participants
[11]. However, even though public blockchains1 have better
information transparency and auditability due to no access lim-
itation, the consensus process among all nodes incur the high
computational cost and long delay. Thus, public blockchains
are unsuitable for energy-limited and time-sensitive scenarios,
such as FL based on mobile devices. The second issue is unre-
alistic ecosystem. Many existing studies [14] assume that the
mobile devices voluntarily participate in FL without asking for
any returns. However, these assumptions are not realistic, as
mobile devices’ training models incur various costs, electricity,
and bandwidth, to name a few. Thus, it is more reasonable to
compensate the mobile devices when the requester wants to

1The public blockchain, e.g., BitCoin [12], and Ethereum [13], is also
referred to as permissionless blockchain since public participants reach the
consensus through the Proof-of-Work (PoW) puzzle competition.
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use resources in them. Under this incentive mechanism, mobile
devices tend to choose strategies to maximize their payoffs in
the whole FL process, given the fixed incentive mechanism.
However, this may not be easy to achieve if the mobile device
does not know other mobile devices’ information, such as the
total data size and the training cost2 because of mobile devices’
privacy concerns. Therefore, it is also a challenge to solve the
problem of incomplete information among mobile devices.

To tackle these two issues, we implement a consortium
blockchain-based resource trading system. Based on the sys-
tem, we deploy a smart contract based incentive mecha-
nism and conduct a comprehensive economic analysis of
the blockchain-based FL resource trading market from the
perspective of mobile devices.

We first consider the implementation of the blockchain
system. Due to the intrinsic differences in the consensus
model, consortium blockchains outperform public blockchains
in terms of efficiency, scalability, and privacy3. However,
there are two limitations to consortium blockchains: 1) Pre-
authorized Problem: the consortium blockchain is a type of
permissioned blockchain where the consensus is achieved by
a set of pre-authorized nodes only; 2) In-scope Consensus:
the consensus in permissioned blockchains is only recog-
nized by nodes within miners, which is different from public
blockchains, whose consensus will be recognized by all nodes
[10]. These limitations do not apply in the scenario. First,
Pre-authorized Problem does not exist in this application. The
problem can be solved by off-chain authentication such as
mobile phone number authentication and identity authenti-
cation, which is also a solution for the Sybil Attack [15]
plaguing consortium blockchains. Second, In-scope Consensus
is sufficient in this application. Transparency and auditability
are only required within the context of the stakeholders, who
are the requester and the mobile devices. In this case, the
mobile devices also serve as the consensus nodes in the
consortium blockchain since they are the stakeholders of the
reward smart contract deployed by the requesters. According
to these features, considering the real-time requirements and
synchronization of FL, we adopt the consortium blockchain to
work out a decentralized and transparent platform for reward
allocation among mobile devices.

To engage self-interested mobile devices, we propose and
deploy a smart contract based incentive mechanism based on
the mobile devices’ contribution in the current global iteration
to motivate mobile devices to participate in the FL tasks. In
this paper, we consider two kinds of strategy models: discrete
strategy model (DSM) and continuous strategy model (CSM)
from the perspective of mobile devices. DSM means that the
mobile devices can decide whether to participate in the FL
task or not. If a mobile device decides to join, all her/his data
will be used to train the model. And CSM refers to that mobile
devices can determine the percentage of data used in the FL
task. Motivated by the iterative interaction of FL, we model the

2The training cost is determined by the training model, task types, and
various mobile devices’ processors.

3Unlike public blockchains, the information on the consortium blockchain
is not available to the public, which protects the privacy of parameters in
federated learning to a certain extent.

mobile devices’ decision problem as a dynamic game to solve
the problem of incomplete information in the training process.
Specifically, empowered by the consortium blockchain system,
even though the mobile devices do not know others’ personal
information, including total data size and training cost, she/he
can observe the histories of the other mobile devices’ strategies
and adjust her/his strategy to maximize the payoff in the FL
task.

We summarizes our key results and contributions as follows:

• System Modeling and Formulation: We propose and im-
plement a smart contract based incentive mechanism to
encourage mobile devices to participate in the FL tasks. In
this case, two kinds of strategy models of mobile devices
in the FL tasks are proposed.

• Dynamic Game Analysis: To the best of our knowledge, it
is the first work in modeling dynamic game for FL, which
builds a foundation for further research. We prove the ex-
istence of the Nash equilibrium (NE) and mixed-strategy
NE of the two models and propose the two corresponding
algorithms to achieve. The simulation results demonstrate
the convergence of the two algorithms, and the CSM can
effectively increase the mobile devices’ payoffs compared
with DSM.

The remainder of this paper is organized as follows: Section
II presents the related works and analyzes their limitations. The
dynamic game model and incentive mechanism are presented
in Section IV. We present DSM and discuss the existence
of NE in Section V. CSM and the existence of NE are
discussed in Section VI. We conduct simulations to evaluate
the effectiveness of the proposed method in Section VII.
Lastly, Section VIII concludes this paper.

II. RELATED WORK

Many studies towards FL put their primary focus on improv-
ing the performance (e.g., [16]), resource allocation [17]–[19]
and solving privacy and safety problems (e.g., [20]).

A. Blockchain-based FL System

Some existing references focus on the combination of
blockchain and FL to solve the concerns on the security and
privacy. For example, Kang et.al [21] propose a blockchain-
based reputation system for FL to avoid unreliable edge de-
vices acting as workers for federated edge learning. Simulation
results show that the proposed methods can obtain perfor-
mance improvement. Feng et.al [22] proposed a blockchain-
based FL framework to authenticate cross-domain unmanned
aerial vehicles to avoid poisoning attacks. Shayan et al. [23]
proposed a blockchain-based system named Biscotti that co-
designs a privacy-preserving FL process. Based on the system,
the requesters can detect poisoning attacks via comparing
the effect with and without the model update on a database.
Different from these previous work, we use the consortium
blockchains to establish a transparent and decentralized trading
platform among distinct mobile devices.
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B. Incentive Mechanism Design for FL

Game theory is often used in the design of incentive
mechanisms in several scenarios, such as cloud computing [24]
and crowdsourcing [25]. Similarly, proper incentives are also
needed to compensate the mobile devices in FL. To motivate
mobile devices to participate in the FL, a few studies work
on designing the incentive mechanism. However, there are
several limitations in these works. First, these existing works
modeled the whole procedure of the FL as one global iteration.
They neglect the fact that global iterations are dynamic in
the entire process of the FL, and mobile devices can decide
whether they are going to join or not in every global iteration.
For example, Jiao et al. [26] did not consider the multiple
global iterations in the FL task and proposed an auction-based
incentive mechanism to select high-quality mobile devices to
maximize social welfare at the beginning of the FL task.
Second, the literature is usually modeled from the requester’s
perspective and ignores the view of the mobile device, e.g.,
maximizing the requester’s payoff given a fixed budget. For
example, Ding et al. [27] presented an analytical study on
the optima inventive mechanism design using a contract from
the server’s perspective and further analyzed three information
scenarios to real the impact of information asymmetry levels
on the server’s optimal strategy and minimum cost. Third,
these existing works always assume that if the mobile devices
are selected to participate FL task, they will use all their data
in the FL task. Mobile devices can decide the proportion of
data size in the FL task. For example, Fan et al. [28] proposed
an auction-based incentive mechanism, and all mobile devices
will report their data size to the requester. If the mobile
devices are selected, they will use all their data to train the
FL model. Apart from these earlier works, we consider the FL
procedure from mobile devices’ point of view. We build up
mathematical models of mobile devices, analyze the FL using
dynamic games, and maximize the payoff of mobile devices in
the whole FL procedure. Moreover, we consider two different
kinds of decision models, from ”whether participate or not”
to ”how much to participate” of mobile devices and prove the
existence of NE. Finally, we propose a learning-based heuristic
algorithm to achieve the NE.

III. BLOCKCHAIN-BASED FEDERATED LEARNING SYSTEM

In this section, we first introduce the motivation to integrate
the blockchain and FL. Then, we present the system users and
system architecture.

A. The Integration of Blockchain and FL

Combining the blockchain and FL is natural because of
the same decentralized character [29]. On the one hand, FL
tends to involve multi-parties and leverage various devices
to train the shared model collaboratively. On the other hand,
blockchain can provide a transparent and secure platform for
many parties involved in FL. With the blockchain technique,
the participation and the allocation of rewards in the FL are
encrypted and stored on blocks, and smart contracts provide
a self-organized transaction process. Hence, The integration

of blockchain and FL aims to support a secure, decentralized
platform for both parties involved in FL.

Blockchains are currently classified as public blockchain
[30], [31] and consortium blockchain [7], which adopt
different consensus scopes among participants. The public
blockchain achieves consensus among overall participants. In
other words, every miner needs to verify and sign the newly
generated block and broadcast it to other miners, which might
cause large network resource consumption and high delay. Be-
sides, several consensus algorithms, such as the PoW, require
participants to work out the sizeable computational puzzle
and cause significant computational resource consumption and
low performance. To compensate the miners for large resource
consumption, the requesters also need to pay the high gas fee.

Compared with the public blockchain, the consortium
blockchain uses Practical Byzantine Fault Tolerance (PBFT)4

to achieve a higher Transaction Per Second (TPS)5 and elimi-
nates the gas fee’s cost due to the narrowing consensus scope
[32]. Since the recorded data only need to be verified within
all mobile devices’ scope rather than all participants, we can
adopt the consortium blockchain in our system with all mobile
devices participating in the consensus. With the consensus,
all other devices can verify the FL task’s participation and
the allocation of rewards and generate new blocks. Moreover,
the smart contract, which can provide an automatic and
decentralized service, does not require gas.

Therefore, because of the real-time requirements of FL and
the frequent interactions among workers and requesters, we
decide to implement consortium blockchain as an infrastruc-
ture for FL. The detailed information of the system will be
shown in III-C.

B. System Users

Therefore, because of the real-time requirements of FL and
frequent interactions among workers and requesters, we decide
to implement consortium blockchain as an infrastructure for
FL. The detailed information of the system will be shown in
III-C.

• Requesters: Requesters are individuals and companies
who need FL tasks training. They will send task require-
ments, including task types and budgets, to the blockchain
system. After every local iteration, they will obtain and
evaluate the model parameters. Meanwhile, they will pay
to mobile devices. The training progress will continue
until the accuracy meets their requirements.

• Mobile Devices: Mobile devices include laptops, smart-
phones, etc. They perform a local model update using
their dataset for serving FL and are incentivized via
payment from the requester.

4Practical Byzantine Fault Tolerance (PBFT) is an algorithm that optimizes
aspects of Byzantine Fault Tolerance (BFT) and has been implemented in
several modern distributed computer systems, especially in some blockchain
platforms.

5TPS refers to the number of atomic actions performed by a certain entity
per second.
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Fig. 1. System Architecture

C. Blockchain architecture

As shown in Fig. 1, the requester and mobile devices
register on the consortium blockchains. Each has its address,
a pair of asymmetric keys (public/private), and a certificate.
Two kinds of nodes are on the consortium blockchain: sealer
nodes and observer nodes. Both can send transactions, while
only sealer nodes can join the consensus process. Hence,
the selection of sealer nodes should be carefully considered.
Otherwise, the recorded data and smart contracts on the
consortium blockchain are at risk of being tampered with.
Since the consensus can ensure that smart contracts can satisfy
the profits of the majority, we can randomly choose initial
mobile devices as seal nodes without loss of generality. As
we mentioned before, we can use the reward smart contract
to allocate the corresponding rewards for mobile devices. The
smart contract requires the requester and the mobile devices
to reach a consensus since it involves both parties’ interests.
As the transaction initiator, the requester deploys the reward
smart contract. The mobile devices that work as sealer nodes
participate in the consensus verification to authenticate the
deployed smart contract. There is a competitive relationship
among the mobile devices, and they are all seeking a fair
reward algorithm to ensure their profits. Hence, most mobile
devices tend to maintain the fair reward algorithm rather
than maliciously tamper with it to prevent the requester from
quitting the transaction and losing what they should have
gained. Moreover, the smart contract is open and transparent.
If the smart contract is tampered with, the requester can
immediately detect tampering and terminate the smart contract.
With all these considerations, we let the mobile devices work
as sealer nodes and the requester work as observer nodes,
which is also shown in Fig. 1. When a mobile device wants
to join the system, she/he sends the IP address to all the
sealer nodes by off-chain means. Through the PBFT consensus
process, she/he can join the network if more than two-thirds
of the sealer nodes authenticate her/his IP address.

In addition to providing a platform for the reward smart
contract, the consortium blockchain can also store transaction
records. The history of the strategies in each global iteration

can be recorded on the blockchain. In other words, each device
can observe all histories in previous global iterations.

IV. SYSTEM MODEL

A. FL Process

FL is a distributed privacy-preserving machine learning
technique. It can make multiple mobile devices capable of
collaboratively training a global shared model without the
necessity of uploading private data that are stored locally to a
central server [33].

Fig. 2. Federated Learning Process

As depicted in Fig. 2, we consider a wireless FL sce-
nario with a requester and several mobile devices. M mo-
bile devices, where M = {m1, · · · ,mj , · · · ,mM}, that
have the computing capacity and local datasets D =
{D1, · · · , Dj , · · · , DN} to provide FL services for the re-
quester. We denote dj to represent the data size of mj . To
protect privacy, the requester with the FL task can train the
machine learning model on these mobile devices’ without
data collection. The requester first sends the model to all
participating mobile devices (step 1). In several iterations,
every mobile device will minimize the training loss over its
local data (steps 2-4). The loss function on the local data of
mj is written as follow:

Lj =
1

dj

∑
n∈Dj

fn(w) (1)

where Lj refers to the training loss over mj ’s local data and
fn(w) is the loss function of sample n.

Then, each participating mobile device will send the new
weight and the gradient to the requester to update the global
model (step 5). Then, the goal of FL is to minimize the global
loss function L(w), which is defined as follow [34]

min
w

L(w) =

∑N
j=1 djLj

D
(2)

After receiving the weights and gradients, the requester
evaluates the model updates from all participating mobile
devices using several mechanisms. Two schemes are used
frequently in this procedure to identify unreliable participants
in the FL task for potential attack risk. The first one is
the rejection of negative influence (RONI) for independent
and identically distributed (IID) data scenarios and another
is FoolsGold mechanism, aiming for non-IID data scenarios
[35] [36]. In this case, the requester can take advantage of
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these useful schemes to effectively remove the unreliable
local model updates from the unreliable mobile devices and
refuse to pay them. The requester integrates all the reliable
local model updates into an average value in Eq.(3), (4) and
sets the average value as the new global model for the next
iteration. Without interference from the unreliable participants,
the newly generated value is more accurate, boosting the
efficiency of the model training. Then, the requester returns
the new global model to the reliable participants and begins
the next global iteration.

wt+1
g =

1

N

N∑
j=1

wt
j (3)

▽J t+1 =
1

N

N∑
n=1

▽J t (4)

where wt+1
g and ▽J t+1 refers to average weights and average

gradients in tth iteration. They will be set as the initial model
parameters in t+ 1th iteration.

B. Dynamic Game for Blockchain-based Federated Learning

The FL task procedure consists of several global iterations,
as shown in Fig. 3. The FL task consists of several global
iterations. In every global iteration, the requester will announce
a fixed reward B for every global iteration, and the workers
will decide whether to participate in every global iteration or
not. We model the interactions between the requester and the
mobile devices as a dynamic game. The interactions can be
illustrated in the following order.

Fig. 3. The component of FL

As shown in Fig. 4, combined with the consortium
blockchain-based FL system mentioned in Section III, the
requester will publish her/his task requirement, including data
type, models types (i.e., convolutional neural network (CNN),
recurrent neural network (RNN)), the maximal computational
time Tmax and the budget B at the beginning of FL task
(step 1). The interaction between the requester and the mobile
devices in one global iteration will be shown as follows.
Given the fixed requester’s fixed budget B, the maximal
computational and communication time Tmax (step 2), every
mobile device mj ∈ M can decide her/his strategy in the
current global iteration according to other mobile devices’
strategies in the past and record it on the blockchain (step
3). Upon receiving the mobile devices’ information, the smart
contract will calculate the reward (step 4). The mobile devices
will receive the requester’s model and begin training with their
local datasets (step 5). After finishing the training process, the

mobile devices send the model parameters to the requester
(step 6). Steps 3, 4, 5 and 6 in Fig. 4 are repeated in each global
iteration. We assume that mobile devices keep connecting in
every global iteration. Each mobile device’s goal is to choose
the best strategy in one global iteration that maximizes her/his
expected payoff during the whole FL task.

Fig. 4. Transaction Process

C. Incentive Mechanism Design

In our FL model, the requester will provide a budget B in
every global iteration, and M mobile devices compete for the
budget. The mobile devices will send their strategy decisions
(i.e., the used data sizes) to the smart contract in every global
iteration. We use sj,n to denote the used data size that the
mobile device mj chooses in the nth global iteration,

Most existing incentive mechanisms in FL are with high
complexity [26], [28]. However, an effective incentive mecha-
nism in FL should be low complex and easy to implement. The
real-time requirement in every global iteration is that mobile
devices receive compensation from the requester before the
next global iteration, which can help them make decisions in
the following global iterations. Besides, mobile devices often
face problems such as lack of power and low signal. Hence,
an incentive mechanism should be with lower computing
complexity, saving mobile devices’ waiting time. The incentive
mechanism proposed in this paper is shown as follows.

pj,n = B
sj,n

sj,n +
∑

i̸=j si,n
(5)

From Eq.(5), we can understand that the requester propor-
tionally allocates its fixed budget to the set of mobile devices
based on their data size in the current global iteration.

V. DSM

In this section, we first study the DSM. In this model, each
mobile device decides whether to participate in the current
global iteration or not to maximize her/his payoff in the
whole FL task. Next, we discuss pure strategy NE and mixed
strategy NE in one global iteration and propose the algorithm
to achieve it.
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A. Problem Formulation

The players of the DSM are the set M of mobile devices.
The strategy of mj ∈M is to decide to participate in with

σj,n = 1 and give up with σj,n = 0 the nth global iteration,
respectively. We denote the strategies of players in M in the
nth global iteration expect mj as σ−j,n.

Next, we define the mobile devices’ payoffs in one global
iteration. Denote mj’s training cost in nth global iteration for
FL task as cj,n. cj,n = cdj,n+ cpj,n+ ccj,n is composed of three
parts, mj’s cost for using these data in one global iteration,
namely data cost denoted as cdj , the cost for computing data in
one global iteration, namely computing cost denoted as cpj,n,
and the cost for uploading the weights and gradients to the
requester in one global iteration, namely communication cost
denoted as ccj,n. For notational convenience, we assume that
the training cost of mj is related to the used data size in
the current global iteration [37], which can be represented as
follows.

cj,n = θjdj,nσj,n (6)

where dj,n refers to the used data size of mj in the nth global
iteration. θj refers to the cost to train the unit data and is
related to both the model types and the mj .

The payoff of mj in the nth global iteration of FL task can
be defined as follows.

V D
j,n((σj,n,σ−j,n)) = 1tj,n≤tmax(−θidj,n + pj,n) · σj,n (7)

where pj,n is defined in Eq.(5) and means the compensation
from the requester to mj in the nth global iteration, and

1tj,n≤Tmax
=

{
1, tj,n ≤ Tmax

0, otherwise.

which means that only mobile devices satisfies the condition
tj,n ≤ Tmax can participate in the nth global iteration to train
the model. The payoff of mobile device mj is related to not
only her/his strategy σj,n but also the strategies σ−j,n of other
players in M except mj in the nth global iteration.

Further, we define the overall payoff of mj over the whole
federated learning task as

V D
j =

∞∑
n=1

δn−1
j Vj,n (8)

where δj ∈ (0, 1) is the discount factor, which represents the
mj’s patience about the future [38].

In conclusion, the Discrete Computation Decision Game
(DCDG) is defined as follows.

Definition 1.(DCDG in the nth global iteration)
• Players: the set of mobile devices M.
• Stategies: σj,n ∈ {0, 1} ,∀j ∈M.
• payoff: Vj,n(σj,n,σ−j,n),∀j ∈M.

where Vj,n refers to the payoff of mobile device mj in
nth global iteration, and the corresponding NE are shown as
follows.

Definition 2.(NE) A NE of DCDG in nth global iteration
is a profile σ∗ = {σj,n, j ∈ N} such that for each mobile
device mj ∈M,

Vj,n(σ
∗
j,n,σ

∗
−j,n) ≥ Vj,n(σj,n,σ

∗
−j,n)

B. NE Analysis

mj make decisions in DCDG to maximize her/his overall
payoff in the whole FL task. Obviously, to get the maximum
value of Vj , we just need to get the maximum value of each
item Vj,n in Eq.(8). In DSM, if mj does not take part in nth
global iteration, the payoff is 0. So, mj will choose to par-
ticipate in the nth global iteration if Vj,n(1,σ−j,n) > 0, and
choose to give up the nthe global iteration if Vj,n(1,σ−j,n) <
0.

Lemma 1. A Decision Game profile is an NE, if and only
if

(2σj,n − 1) · V D
j,n(1,σ

∗
−j,n) ≥ 0,∀mj ∈M

Proof:According to the definition of NE, if (2σi,n −
1)V D

i,n(1,σ
∗
−i,n) < 0, the best strategy for mj is to give

up the nth global iteration and the strategy is σj,n =
0, hence (2σj,n − 1)(V D

j,n(1,σ
∗
−j,n)) ≥ 0. If (2σj,n −

1)V D
j,n(1,σ

∗
−j,n) > 0, the best strategy for mj is σj,n =

1, hence (2σj,n − 1)(V D
j,n(1,σ

∗
−j,n)) ≥ 0. The necessity

has been proved. Then, we proof the sufficiency. Suppose
V D
j,n(1,σ

∗
−j,n) < 0. Then the desired σj,n that satisfies the

condition in Lemma 1 is σj,n = 0, which is the best strategy
of mj . Suppose V D

j,n(1,σ
∗
−j,n) > 0. Then the desired σj,n that

satisfies the condition in Lemma 1 is σj,n = 1, which is also
the best strategy of mj . The proof is now completed.

According to the Lemma 1, the DCDG may not always
have a pure strategy NE. Next, we will discuss the existence
of mixed-strategy NE in DCDG and give an algorithm to
achieve it.

C. Mixed-Strategy NE

The mixed strategy of mj in the nth global iteration is
simply a probability distribution over her/his pure strategy,
i.e., mj has the probability αj,n ∈ [0, 1] to participate in the
nth global iteration and the probability 1−αj,n to give up the
current global iteration. For notation convenience, we denote
the mixed strategy profile of all mobile devices in the nth
global iteration as

αn = {αj,n, j ∈M}

According to the von Neumann Morgenstern criterion [39],
the expected payoff of mj can be defined as

ωj,n(αj,n,α−j,n) = αj,n · V j,n(1,α−j,n)+

(1− αj,n) · V j,n(0,α−j,n)
(9)

where V D
j,n(1,α−j,n) and V D

j,n(0,α−j,n) are mj’s expected
payoffs when choosing to participate the nth global iteration
and give up the nth global iteration, respectively. In our model,
if mj choose 0 in the nth global iteration, her/his payoff
will be 0, i.e, V D

j,n(0,α−j,n) = 0. Note that V
D

j,n(1,α−j,n)
refers to the expected values over all possible strategies over
all mobile devices expect mj when mj choose to participate
in the current global iteration. Specifically, M − 1 other
mobile devices form a subset M−j , and 2M−1 possible
strategies combination of those mobile devices form a set
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Σ−j,n. Mobile device mi ∈ M−j has the probability αi,n

to participate in and 1 − αi,n to give up the current global
iteration respectively. Then, the probability of σ−j,n ∈ Σ−j,n

can be represented as follows.

ϕ(σ−j,n) =
∏

mi∈M−j

αi,n · σi,n (10)

Then, the expected payoff of mobile device mj can be
calculated by

V D
j,n(σj,n,α−j,n) =

∑
σ−j,n∈Σ−j,n

ϕ(σ−j,n)V
D
j,n(σj,n,σ−j,n),

σj,n ∈ {0, 1}
(11)

where V D
j,n(σj,n,σ−j,n) is the overall payoff of mj under the

pure strategy profile.
Definition 3. (Mixed-Strategy NE) A mixed-strategy NE of

DCDG is a probability profile α∗ such that for each worker
mj ∈M:

ωj,n(α
∗
j,n,α−j,n) ≥ ωj,n(αj,n,α−j,n),∀αj ∈ [0, 1]

Lemma 2 There exists at least one mixed-strategy NE in
the DCDG.

Proof.The DCDG is a finite game including M players, and
each player has two strategies. Hence, there exists at least one
mixed-strategy equilibrium [40].

Combined with the consortium blockchain system men-
tioned in Section III, we propose to use a smoothed best re-
sponse updated algorithm [41] to compute the mixed-strategy
NE. All the players in DCDG (i.e., all the mobile devices) can
record their strategies on the blockchain and make decisions
based on past strategies. The detailed information will be
shown in Alg.1.

Algorithm 1 Smoothed best response algorithm
Require: α0, γ, △
Ensure: α∗

1: Initialize ← 0, f ← 0
2: while f = 0 do
3: n← n+ 1
4: for j = 1 : N do
5: Calculate V D

j,n(1, α−j,n−1)

6: αj,n+1 = e
(1/λ)V D

j,n
(1,α−j,n)

e
(1/λ)V D

j,n
(1,α−j,n)

+1
7: end for
8: if |αn −αn−1| < △ then
9: f ← 1

10: end if
11: end while
12: return αn

At the beginning of the next global iteration, mj will
computes the expected payoff when choosing to participate
in this global iteration according to the other mobile devices’
strategies recorded on the consortium blockchain in the past
(line 4-line 5). Then, each mobile device will update her/his
mixed strategy at the next global iteration according to Eq.(12)

(line 6). The mixed-strategy NE will be achieved when the
condition is satisfied (line 8-line 10).

αj,n+1 =
e(1/λ)V

D
j,n(1,α−j,n)

e(1/λ)V
D
j,n(1,α−j,n) + 1

(12)

where λ refers to the freedom degree6 of mj . According to
the result in [41], we can obtain that such a smoothed best
response with some learning rules converges to the mixed-
strategy NE.

VI. CSM

In this section, we talked about CSM. Specifically, the
mobile devices in CSM would adopt not only ”participate in”
or ”not participate in” but also ”how much to participate in”.
We investigate NE’s existence and propose a learning-based
heuristic algorithm to achieve NE based on CSM.

A. Problem Formulation

As the same as DSM, the players of CSM are also the set
of mobile devices M participating in the FL task.

Unlike DSM, the strategy of mj ∈ M is to decide how
much to participate in the FL task in the nth global iteration.

The training cost in CSM of mj is the same as the training
cost in DSM. So, the payoff of mj in the nth global iteration
of the FL task in CSM can be defined as follows:

V C
j,n((σj,n,σ−j,n)) = 1tj≤tmax

(−θjσj,nsj + pj,n) (13)

where σj,n ∈ [0, 1] denotes the percentage of data used
for federated learning in the nth global iteration. Hence,
−θjσj,nsj refers to the training cost when mj’ strategy is
σj,n in the current local iteration. Besides, we use σ−j,n to
represent the strategies of other mobile devices in M.

More formally, the Continues Computation Decision Game
(CCDG) and the corresponding NE are defined as follows:

Definition 4.(CCDG in one global iteration)

• Players: the set of mobile devices M.
• Stategies: σj,n ∈ [0, 1],∀mj ∈M.
• Payoffs: V C

j,n(σj,n,σ−j,n),∀mj ∈M.

Definition 5.(NE) A NE of the CCDG in nth global iteration
is a profile σ∗ = {σj,n,mj ∈M} such that for mj ∈M,

V C
j,n(σ

∗
j,n,σ

∗
−j,n) ≥ V C

j,n(σj,n,σ
∗
−j,n)

B. NE Analysis

Next, we talk about the existence of NE in CSM. mj’s
strategy σj,n belongs to a closed and bounder convex set [0, 1].
And V C

j,n is a continuous and quasi-concave function of σj,n.
According to the Existence Theorem II of NE [43], the NE of
CCDG exists.

6A larger freedom degree refers to that the mobile device is more likely to
act randomly [42]
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C. Learning-based Heuristic Algorithm

We have proved the existence of NE in VI-B. In this
subsection, we propose a learning-based heuristic algorithm
for the perspective of mobile devices to achieve NE in CSM.

In CSM, every mobile device can change its payoff by
adjusting the percentage of data used in the current global
iteration of the FL task. If the FL system can achieve NE,
each mobile device will achieve NE. In this case, every mobile
device can obtain her/his maximum utility and is unwilling to
change the strategy. Thus, the objective function of mj can be
represented as follows.

maxV C
j (B, (σj,n,σ−j,n))

s.t. σj,n ∈ [0, 1]

where V C
j represents the overall payoff of mj under CSM in

the FL task.
The value of nth item in the objective function is related to

the used data size that the mobile devices choose in the nth
global iteration and is unrelated to the other global iterations.
Therefore, to maximize the V C

j , we need to maximize each
item’s value in this objective function. Thus, the objective
function can be transformed as follows.

max δn−1(−θjσj,nsj +B
σj,nsj

σj,nsj +
∑

i̸=j σi,nsi
)

s.t. σj ∈ [0, 1]

Obviously, in order to make sure that the payoff of the mobile
device is not negative, the following condition should be
satisfied

−θj +B
1

σj,nsj +
∑

i̸=j σi,nsi
≥ 0 (14)

Next, we let

g(σj,n) =
∂[δn−1(−θjσj,nsj +B

σj,nsj
σj,nsj+

∑
i̸=j σi,nsi

)]

∂σj,n

= δn−1(−θjsj +B
sj

∑
i̸=j σi,nsi

(σj,nsj +
∑

i̸=j σi,nsi)2
)

(15)

and analyze its characteristics: We can observe that δn−1 > 0,
so we can omit the effect of this part. Otherwise g(σj,n)
decreases with σj,n and converges to −θjsj < 0 when
σj,n →∞. If σj,n = 0, g(0) = δn−1(−θjsj +B

sj∑
i̸=j σi,nsi

).
According to Eq.(14), we can get g(0) > 0. So, the ob-
jective function have maximum value in [0,+∞]. However,
σj,n ∈ [0, 1] and we need to decide the sign of g(1). We
discuss two scenarios here.

First, if g(1) > 0 and g(σj,n) is continuous with σj,n. So,
the objective function can achieve maximum value if σj,n = 1.

Second, if g(1) < 0 and g(σj,n) is continuous with σj,n.
So, the objective function has only one maximum value in
[0, 1].

Thus, we let −θjsj + B
sj

∑
i̸=j σi,nsi

(σj,nsj+
∑

i̸=j σi,nsi)2
= 0. By

solving this equation, we can obtain that the optimal choice
for σj,n in the nth global iteration, denoted by σ∗

j,n.

Given the used data size of other mobile devices, we can
get

σ∗
j,n =

√
B
∑

i̸=j σi,nsi

θjs2j
−

∑
i̸=j σi,nsi

sj
(16)

Summarize the two cases mentioned above and conclude
the optimal choice for mobile devices.

σ∗
j,n = min(1,

√
B
∑

i̸=j σi,nsi

θjs2j
−

∑
i̸=j σi,nsi

sj
) (17)

Next, we consider the homogeneous mobile devices and the
heterogeneous mobile devices, respectively.

Homogeneous Mobile Devices: To better comprehend the
meaning of the mobile device’s optimal choice, we simplify
the conditions and consider that all mobile devices are ho-
mogeneous to obtain the analytical solution of the optimal
strategy in each global iteration for mj . When all mobile
devices are homogeneous (i.e., they have the same θj to
compute the unit data and sj is the same), they have the same
optimal strategy, which can be represented as follows:∑

i̸=j

σ∗
i,nsi = (N − 1)σ∗

j,nsj (18)

And we can get the expression of σ∗
j,n

σ∗
j,n =

(N − 1)B

N2θjsj
(19)

Under this situation, every mobile device can calculate the
optimal data size and achieve NE easily.

Heterogeneous Mobile devices: Moreover, we consider a
practical condition that all mobile devices are heterogeneous.
When all mobile devices are heterogeneous (i.e., they have dif-
ferent θi and dj), they cannot calculate the explicit expression
of σj,n in every global iteration. Fortunately, mobile devices
can obtain others’ information from the consortium blockchain
system. Hence, we propose a learning-based heuristic algo-
rithm to get the optimal strategy from the perspective of mobile
devices.

In the nth global iteration, mj needs to decide the used data
size in the current global iteration. And every mobile device
can observe the total budget in every global iteration and
other mobile devices’ behavior in the past global iterations.
Thus, mobile devices can calculate

∑
i̸=j σi,n based on the

observation and assume that other mobile devices’ strategies
of the current global iteration are related to the decisions made
in the past global iterations. The detailed information will be
shown in Alg.2.

At the beginning of every global iteration, mj firstly takes
others’ average used data size in the [n − T, n − 1]th global
iterations as the other mobile devices’ behaviors in the current
global iteration (line 6). Then, they use the average result to
calculate their optimal strategy according to Eq.(17) (line 7).
After this global iteration, mobile devices can upload their
strategies to the consortium blockchain (line 8).
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Algorithm 2 Learning-based heuristic algorithm
Require: s = {s1, · · · , sM}, T , B, N
Ensure: σ∗

1: for j = 1 : M do
2: Hj ← ϕ
3: end for
4: for n = 1 : N do
5: for j = 1 : M do
6: Calculate

∑
i̸=j σi,n based on the history

7: σj,n = min(sj ,

√
B

∑
i̸=j σi,n

θjs2j
−

∑
i̸=j σi,nsi)

sj

8: Hj ←Hj ∪ σj,n

9: end for
10: end for
11: return σ∗

n

VII. SYSTEM IMPLEMENTATION AND EVALUATION

A. Test-bed Implementation

In order to better demonstrate our system, we implement a
prototype. In this section, we introduce the enabling technolo-
gies and the prototype’s system deployment and demonstrate
it with several shortcuts.

1) Test-bed Specification: In our prototype, we choose a
workstation and let a laptop and a nuc act as two mobile
devices. Next, we will introduce the configuration of these
computers. The workstation we choose is an HP OMEN
equipped with Intel i9-12900K CPU, NVIDIA RTX3090 GPU
with 24 GB VRAM, 64GB RAM, 1T SSD, and 2T HDD.
Meanwhile, we choose a Dell XPS 13 as a mobile device
equipped with Intel i7-6500 CPU and Intel Graphics 520 GPU,
8 GB RAM, and 512GB. As for the other mobile device, we
choose an Intel NUC equipped with i7-8809G, including both
Intel CPU and AMD GPU, 16 GB RAM, and 512GB.

Fig. 5. The test-bed implementation

Fig. 5 illustrates the test-bed implementation of our system.
We choose a workstation to act as a requester and let the
other two laptops and NUC work as mobile devices in our
test-bed implementation. To ensure they can ping with each

other, we configure their networks under the same gateway.
The three devices can form a peer-to-peer network and build
up a consortium blockchain, where the workstation works as
an observer node and mobile devices work as sealer nodes. We
can simulate the interactions between the requester and mobile
devices with the consortium blockchain. The requester firstly
deploys a reward smart contract on the consortium blockchain.
Then, mobile devices can send their strategies by calling the
functions on the smart contract. Finally, the requester can call
the functions to end the game and let the smart contract to
compute the rewards. As shown in Fig. 5, we simulate the
whole procedure on the consortium blockchain. We consider
two mobile devices in our test-bed implementation, and the
initial mobile devices are randomly chosen. If a new mobile
device wants to join the platform, it can join the consortium
blockchain and participate in the consensus as a sealer node
through the peer-to-peer network.

2) Enabling Technologies: The test-bed implementation
includes several existing technologies. For the consortium
blockchain platform, we choose FISCO-BCOS7, an open-
source consortium blockchain platform. FISCO-BCOS also
provides a web page which can directly demonstrate the
information of the consortium blockchain, which is shown
in Fig. 6. The upper layer shows the current status of the
consortium blockchain, such as block number, transaction
amount, and PBFT view that records the number of times
leader switch in the PBFT consensus. Meanwhile, a line chart
shows the transaction amount in the last 15 days. The middle
layer demonstrates the information of nodes in the consortium
blockchain. Moreover, the detailed information of block and
transaction is demonstrated in the lower layer.

Besides, we can also use the provided python-SDK8 to
develop and test the situation of the consortium blockchain.
As for the programming language of the smart contract, we
use Solidity9 to write the reward smart contract.

Fig. 6. The web page

3) Smart Contract Deployment: Initially, the requester de-
ploys the reward smart contract in the consortium blockchain.
Once it is deployed, the smart contract has a unique address,
and the requester and edge nodes can call functions of the

7http://fisco-bcos.org/
8https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/tree/release-

2/docs/sdk/python sdk
9https://github.com/ethereum/solidity
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Fig. 7. The probability of mobile devices participating the current global
iteration

smart contract through its address. Our proposed algorithm
is implemented in the smart contract. Mobile devices can
send their strategies to the smart contract by calling the
corresponding functions. After all the mobile devices send
their strategies, the smart contract can calculate their rewards
and the results will be sent back to the requester and mobile
devices.

B. Simulation Results

In this section, we show the numerical results from our
evaluations to study the impacts of the incentive mechanism
and the behaviors of the mobile devices in the FL task.

The simulation configurations are as follows: We consider
FL scenarios at different scales, containing a requester and
several mobile devices. Specifically, the number of participat-
ing mobile devices varies from 10 to 100. The budget of the
requester varies from 1000 to 4000. Based on the parameter
setting in the work of Fan et al. [28], we uniformly generate
mobile devices’ data size from 500 to 1500. According to the
experiment conducted in [44], the value of θj obeys a normal
distribution with a mean of 0.1 and a variance of 0.02 (i.e.,
θj ∼ N(0.1, 0.0004)).

1) Simulation Results on mixed-strategy NE of DSM: In this
subsection, we use simulation results to show the convergence
of DSM in mixed-strategy NE. At the beginning of the first
global iteration, every mobile device that participates in the
FL task chooses a probability α ∈ [0, 1]. They will adjust
their probability according to others’ strategies until the system
reaches equilibrium.

As shown in Fig. 7, we can observe that the system will
achieve equilibrium before the 60th global iteration. Because
of the heterogeneous characteristics, different devices have
different probabilities in equilibrium states. Specifically, the
probability of device-2 and device-3 to participate in every
global iteration in mixed-equilibrium NE is around 0.6. And
the probability of device-3 and device-4 is between 0.2 and 0.3
in equilibrium states. The simulation results are carried out 100

times, and we get the same results, which shows the dynamic
game among non-cooperative mobile devices can achieve NE.

2) Simulation Results on NE of CSM: At the very begin-
ning, every mobile device chooses a small data size to train the
FL model. They will adjust their strategies according to others
to maximize their payoff in the following global iterations. For
every mobile device, if the difference between the data size
used in the adjacent two global iterations is less than 10, it is
considered to reach the equilibrium state.

Fig. 8. Ratio of stable devices under different number of mobile devices

Fig. 9. Ratio of active device under different devices

Fig. 8 shows that the ratio of stable devices when the
budget is fixed at 3000, and the number of devices varies
from 10 to 100. We believe that the strategy of a mobile
device is the same as the strategy of the last epoch, which can
be considered stable. At the beginning of the FL, we notice
that the ratio of stable devices increases dramatically when
the number of mobile devices is 50 and 100, respectively.
The reason is that when the budget is fixed, the competition
becomes more intense as the numbers of mobile devices grow.
Hence, most mobile devices choose to give up this task, and
the ratio of stable devices is high. In this case, some mobile
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Fig. 10. Ratio of stable devices under different budget

Fig. 11. Ratio of active devices under different budget

devices with small θ decide to participate in the FL task and
keep changing their strategies, resulting in the ratio of stable
devices declining. However, when the market is small(i.e.,
the number of mobile devices is 10 and 20), the ratio of
stable devices increases stable. Moreover, we can observe that
all mobile devices can reach equilibrium states under four
different mobile devices. Specifically, more than 90 percent of
mobile devices can reach equilibrium states before 20 global
iterations. Before the 20th global iteration, the ratio of stable
devices increased with the rising number of mobile devices. As
the number of global iterations increased, the stable devices’
ratio almost reached parity.

From Fig. 9, we investigate the ratio of active workers
when the number of mobile devices varies from 10 to 100.
Because of the intense competition and low compensation,
some mobile devices may choose to give up this task during
the FL training. Hence, we use active devices to refer to the
mobile devices that participate in the FL tasks. (i.e., their
strategies are not 0 in the current global iteration). We can
observe that with the increasing number of mobile devices,

Fig. 12. The comparison of the mobile devices’ average payoffs between
CSM and DSM

the ratio of active devices decreases, and the total number
of active mobile devices keep stable under the fixed budget.
Even though the number of mobile devices in the FL becomes
large, the requester cannot recruit more mobile devices under
the fixed budget. Because of the intense competition, many
mobile devices will give up this FL task initially.

Fig. 10 shows that the ratio of stable devices when the
number of mobile devices is fixed at 10, and the budget in
one global iteration varies from 1000 to 4000. From this
figure, we can obtain that the ratio of stable devices increases
sharply. The reason is that the small budget (i.e., B = 1000) is
not attractive to mobile devices. Hence, most mobile devices
choose to give up this task. However, some mobile devices
observe others’ behaviors and participate in this task. They
begin to keep changing their strategies, resulting in a decrease
in the ratio of stable devices. For a larger budget (i.e.,
B = 3000 and B = 4000), the ratio of stable devices keeps
increasing until they become stable. Moreover, we can observe
that the budget has little impact on the convergence speed.

From Fig. 11, we investigate the ratio of active workers
when the budget varies from 1000 to 4000 with an increment
of 1000. At the beginning of the FL, we notice that the ratio
of active devices increases rapidly when the budget is 4000.
When the system reaches an equilibrium state, we can find that
the ratio of active devices rises with the increasing budget. This
is because that mobile devices are more willing to participate
in the FL task with more budget.

C. Simulation Results on the Comparison of DSM and CSM

Fig. 12 compares the average expected payoffs of mobile
devices in DSM with the average payoffs of mobile devices
in CSM when the number of devices is fixed at 10, and the
budget in one global iteration varies from 2000 to 7000. This
figure shows that the mobile devices’ average payoff increases
with the rising budget under CSM and DSM, respectively.
Compared with DSM, the CSM can effectively improve the
mobile devices’ payoffs to 128.1 percent when the budget
is 3000. That is because mobile devices’ strategies in CSM
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are more flexible. They can change the percentage of data
used in every global iteration according to the other mobile
devices’ behaviors in the past global iterations. However,
mobile devices in DSM can only choose to participate in
or not participate in the current global iteration. If many
mobile devices decide to simultaneously participate in one
global iteration, their compensation will reduce. Hence, mobile
devices can achieve higher average payoffs in CSM.

VIII. CONCLUSION

This paper presents and implements a consortium
blockchain-based system for FL, which provides a transparent
and traceable trading market. A requester coordinates mobile
devices to train a shared global model in the design, with raw
data stored locally. To motivate mobile devices to participate in
the FL tasks, we first propose a simple and easy-to-implement
incentive mechanism based on the mobile devices’ used data
size in the current global iteration. Moreover, we offer a
dynamic game-based theoretical framework to investigate the
mobile devices’ behaviors based on the incentive mechanism.
Specifically, we propose two kinds of strategy models, namely
DSM and CSM, and analyze the mobile devices’ behaviors
using the dynamic game. With the consortium blockchain,
the systems can record the mobile devices’ behaviors and
reward allocation in every global iteration of FL. Hence, every
mobile device can observe other participants’ past behaviors
and adjust their strategies in the current global iteration. Then,
we prove the existence of NE and propose two algorithms to
achieve NE in two strategy models. Lastly, we use simulation
results to demonstrate the two algorithms’ convergence. More-
over, the CSM can effectively increase the mobile devices’
payoffs to 128.1 percent at most compared with DSM.

In our future work, we aim to investigate the requester’s
behaviors based on mobile devices’ analysis results and hope
to consider the impact of the requester’s strategies on mobile
devices. Moreover, we will extend the scenario from one
requester to multiple requesters.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6g: Ai empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[2] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Feder-
ated learning for 6g communications: Challenges, methods, and future
directions,” China Communications, vol. 17, no. 9, pp. 105–118, 2020.

[3] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” arXiv:1905.06641v2, 2019.

[4] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, 2020.

[5] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[6] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, 2021.

[7] H. Zhang, S. Fan, and W. Cai, “Decentralized resource sharing platform
for mobile edge computing,” in International Conference on 5G for
Future Wireless Networks, pp. 101–113, Springer, 2020.

[8] Y. Du, Z. Wang, and V. C. M. Leung, “Blockchain-enabled edge
intelligence for iot: Background, emerging trends and open issues,”
Future Internet, vol. 13, no. 2, 2021.

[9] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A blockchain-
based decentralized federated learning framework with committee con-
sensus,” IEEE Network, vol. 35, no. 1, pp. 234–241, 2021.

[10] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. Leung, “De-
centralized applications: The blockchain-empowered software system,”
IEEE Access, vol. 6, pp. 53019–53033, 2018.

[11] Z. Zhang, D. Dong, Y. Ma, Y. Ying, D. Jiang, K. Chen, L. Shou, and
G. Chen, “Refiner: A reliable incentive-driven federated learning system
powered by blockchain,” Proc. VLDB Endow., vol. 14, p. 2659–2662,
jul 2021.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech.
rep., 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf.

[13] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–
32, 2014.

[14] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, pp. 1–1,
2020.

[15] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems, pp. 251–260, Springer, 2002.

[16] L. Li, J. Wang, X. Chen, and C. Z. Xu, “Multi-layer coordi-
nation for high-performance energy-efficient federated learning,” in
2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), pp. 1–10, 2020.

[17] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung,
and C. Miao, “Decentralized edge intelligence: A dynamic resource
allocation framework for hierarchical federated learning,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 536–550,
2021.

[18] W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, C. Miao, and D. I. Kim,
“Dynamic edge association and resource allocation in self-organizing
hierarchical federated learning networks,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3640–3653, 2021.

[19] Q. Hu, S. Wang, Z. Xiong, and X. Cheng, “Nothing wasted: Full
contribution enforcement in federated edge learning,” IEEE Transactions
on Mobile Computing, 2021.

[20] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” pp. 1175–1191, 10 2017.

[21] J. Kang, Z. Xiong, X. Li, Y. Zhang, D. Niyato, C. Leung, and C. Miao,
“Optimizing task assignment for reliable blockchain-empowered fed-
erated edge learning,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 2, pp. 1910–1923, 2021.

[22] C. Feng, B. Liu, K. Yu, S. K. Goudos, and S. Wan, “Blockchain-
empowered decentralized horizontal federated learning for 5g-enabled
uavs,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5,
pp. 3582–3592, 2022.

[23] M. Shayan, C. Fung, C. J. Yoon, and I. Beschastnikh, “Biscotti: A
blockchain system for private and secure federated learning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 7,
pp. 1513–1525, 2020.

[24] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “A
blockchain based witness model for trustworthy cloud service level
agreement enforcement,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, pp. 1567–1575, IEEE, 2019.

[25] H. Wang, H. Zhou, G. Yang, and T. Xiao, “Dcrowd: A decentralized
service model for credible crowdsourcing based on game theory and
smart contracts,” in 2021 IEEE International Conference on Services
Computing (SCC), pp. 23–33, 2021.

[26] Y. Jiao, P. Wang, D. Niyato, B. Lin, and D. I. Kim, “Toward an
automated auction framework for wireless federated learning services
market,” IEEE Transactions on Mobile Computing, 2020.

[27] N. Ding, Z. Fang, and J. Huang, “Optimal contract design for efficient
federated learning with multi-dimensional private information,” IEEE
Journal on Selected Areas in Communications, 2020.

[28] S. Fan, H. Zhang, Y. Zeng, and W. Cai, “Hybrid blockchain-based
resource trading system for federated learning in edge computing,” IEEE
Internet of Things Journal, vol. 8, no. 4, pp. 2252–2264, 2021.

[29] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile
blockchain meets edge computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33–39, 2018.

[30] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Le-
ung, “Decentralized applications: The blockchain-empowered software
system,” IEEE Access, vol. 6, pp. 53019–53033, 2018.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 16,2022 at 07:50:13 UTC from IEEE Xplore.  Restrictions apply. 



2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3163791, IEEE
Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[31] Z. Hong, Z. Wang, W. Cai, and V. Leung, “Blockchain-empowered
fair computational resource sharing system in the d2d network,” Future
Internet, vol. 9, no. 4, p. 85, 2017.

[32] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, pp. 173–186, 1999.

[33] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Feder-
ated learning for 6g communications: Challenges, methods, and future
directions,” China Communications, vol. 17, no. 9, pp. 105–118, 2020.

[34] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 1387–1395, 2019.

[35] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless Com-
munications, vol. 27, no. 2, pp. 72–80, 2020.

[36] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10700–10714, 2019.

[37] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 1387–1395, IEEE, 2019.

[38] D. T. Hoang, X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han,
“Applications of repeated games in wireless networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2102–2135,
2015.

[39] J. Von Neumann and O. Morgenstern, “Theory of games and economic
behavior, 2nd rev,” 1947.

[40] S. Li and J. Huang, “Price differentiation for communication networks,”
IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 703–716,
2014.

[41] D. Fudenberg, F. Drew, D. K. Levine, and D. K. Levine, The theory of
learning in games, vol. 2. MIT press, 1998.

[42] Q. Ma, L. Gao, Y. Liu, and J. Huang, “Economic analysis of crowd-
sourced wireless community networks,” IEEE Transactions on Mobile
Computing, vol. 16, no. 7, pp. 1856–1869, 2017.

[43] G. Debreu, “A social equilibrium existence theorem,” Proceedings of
the National Academy of Sciences, vol. 38, no. 10, pp. 886–893, 1952.

[44] Y. Zou, S. Feng, D. Niyato, Y. Jiao, S. Gong, and W. Cheng, “Mobile
device training strategies in federated learning: An evolutionary game
approach,” in 2019 International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 874–879, IEEE, 2019.

Sizheng Fan [S’20] received the B.Eng. degree in
Automation from Beijing Institute of Technology,
China in 2018. He is currently working towards
Ph.D. in Computer and Information Engineering at
The Chinese University of Hong Kong, Shenzhen,
China. He is working as an Research Assistant
in Human-Cloud Systems Laboratory. His current
research interests include blockchain, game theory
and crowdsourcing. He is a student member of the
IEEE and the CCF.

Hongbo Zhang received the B.Eng. degree in Com-
puter Science and Engineering from The Chinese of
University of Hong Kong, Shenzhen, China in 2020.
He is currently working towards M.Phil. with the
School of Science and Engineering in The Chinese
University of Hong Kong, Shenzhen, China. He is
working as a Research Assistant in Human-Cloud
Systems Laboratory. His current research interests
include blockchain, game theory, machine learning
and edge computing.

Zehua Wang [S’11-M’17] received his Ph.D. degree
from The University of British Columbia (UBC),
Vancouver in 2016 and was a Postdoctoral Research
Fellow in the Wireless Networks and Mobile Sys-
tems (WiNMoS) Laboratory directed by Prof. Victor
C.M. Leung from Feb. 2017 to Aug. 2018. Before
that, he received his bachelor’s and master’s degrees
from Wuhan University and Memorial University,
respectively. He is now an Adjunct Professor in the
Department of Electrical and Computer Engineer-
ing at UBC, Vancouver and the CTO at Intellium

Technology Inc., BC, Canada. He was a recipient of the Four Year Doctoral
Fellowship at UBC from 2012 to 2016 and the Graduate Support Initiative
Awards at UBC in 2014 and 2015. He received the Chinese Government
Award for Outstanding Self-Financed Students Abroad in 2015. He is an
Editor of Wireless Networks and served as the guest editors for a few special
issues in top journals including IEEE Access and ACMSpringer Mobile
Networks & Applications.

Wei Cai [S’12-M’16] received the B.Eng. degree
in Software Engineering from Xiamen University,
China in 2008, the M.S. degree in Electrical Engi-
neering and Computer Science from Seoul National
University, Korea, in 2011, and the Ph.D. degree
in Electrical and Computer Engineering from The
University of British Columbia (UBC), Vancouver,
Canada, in 2016. From 2016 to 2018, he was a
Postdoctoral Research Fellow with UBC. He is
currently an assistant professor of Computer En-
gineering, School of Science and Engineering at

The Chinese University of Hong Kong, Shenzhen. He is serving as the
director of the CUHK(SZ)-White Matrix Joint Metaverse Laboratory. Dr.
Cai has co-authored more than 70 journal and conference papers in the area
of interactive multimedia and distributed/decentralized systems. His recent
research interests are mainly in the topic of human-centered computing for
metaverse, including blockchain, digital game, Web 3.0, and computational
art. He serves as a Technical Program Committee member in ACM MM,
MMSys, and NOSSDAV. He is an associate editor of IEEE Transactions on
Cloud Computing. He was a recipient of the 2015 Chinese Government Award
for the Outstanding Self-Financed Students Abroad, the UBC Doctoral Four-
Year-Fellowship from 2011 to 2015, and the Brain Korea 21 Scholarship. He
also received the best student paper award from ACM BSCI2019 and the best
paper awards from CCF CBC2018, IEEE CloudCom2014, SmartComp2014,
and CloudComp2013.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 16,2022 at 07:50:13 UTC from IEEE Xplore.  Restrictions apply. 


